Quantum networks based on superconducting circuits and dissipative channels (2015–2017)

Abstract:
Superconducting circuits have great potential for probing and using quantum nature on a chip but lack networking capabilities between remote sites. In contrary, non-local quantum correlations are critical for quantum devices to surpass classical systems. This project will create capabilities for establishing entanglement between remote superconducting chips using non-local dissipative interaction. Within this approach the created entanglement can be also preserved as long as necessary as a resource for quantum protocols. The resulting technology enables quantum information processing in superconducting circuits on fundamentally larger scales and provides a powerful platform to test the limits for building artificial quantum systems.
Grant type:
ARC Discovery Projects
Researchers:
  • Associate Professor
    School of Mathematics and Physics
    Faculty of Science
    Associate Professor
    School of Mathematics and Physics
    Faculty of Science
    Affiliate of ARC COE for Engineered
    ARC Centre of Excellence for Engineered Quantum Systems
    Faculty of Science
Funded by:
Australian Research Council