Elucidating the morphology of organic semiconductors at an atomic level (2020–2022)

Abstract:
Controlling morphology and self-organization at a molecular level is key to advancing the performance of optoelectronic devices such as organic light-emitting diodes and organic photovoltaic cells. Current device development relies on a costly and inefficient empirical design cycle (material synthesis followed by device fabrication and testing). In addition, the active layers often involve multiple components and their nano-scale morphology is difficult to probe experimentally. Recently developed molecular simulation techniques can provide unique insight into atomic-level structural details that determine device efficiency. The project will determine if such simulations are sufficiently accurate to be industrially useful.
Grant type:
ARC Linkage Projects
Researchers:
  • Professor
    School of Chemistry and Molecular Biosciences
    Faculty of Science
    Affiliate of ARC COE for Innovation
    ARC Centre of Excellence for Innovations in Peptide and Protein Science
    Institute for Molecular Bioscience
    Affiliate of ARC COE in Quantum Bio
    ARC Centre of Excellence in Quantum Biotechnology
    Faculty of Science
  • UQ Laureate Fellow
    School of Chemistry and Molecular Biosciences
    Faculty of Science
Funded by:
Australian Research Council